The study described in this paper analyses the properties of time series of two market liquidity measures, spread quotient and bias, for three cryptocurrencies: Bitcoin (BTC), Litecoin (LTC), and XRP. The analysis is carried out on the basis of order book data from three cryptocurrency exchanges: Binance, Bitfinex, and Coinbase. The study aims to identify the time-series properties of selected liquidity measures to assess whether their characteristics remain consistent across different cryptocurrencies and exchanges, and whether measures representing two distinct dimensions of liquidity – market tightness (spread quotient) and market depth (bias) – behave similarly to each other or rather clearly differently. We examined time series obtained by averaging tick-level order-book data over 5-, 15-, and 60-minute intervals. The time series of the selected measures were characterised by distinct properties. In the bias series, the following characteristics were identified: an ARMA effect, a Power GARCH effect, a fat-tailed conditional distribution of residuals, symmetry of the residual distribution and the absence of leverage effects. The spread series, on the other hand, were characterised by mean reversion and a level-GARCH effect, i.e. the higher the spread (which is indicative of a market’s lower liquidity), the greater the conditional variance, and the News Impact Curve depends on the process level. Moreover, the level effect in the conditional variance model was more pronounced in hourly data than in 15-minute data, and by the same token, it was more pronounced in 15-minute data than in 5-minute data. The specific properties of the spread quotient series vary according to the token (cryptocurrency), the cryptocurrency exchange, and the aggregation frequency for which the study is performed, whereas the characteristics of the bias time series remain more consistent across these dimensions.
market liquidity, liquidity measures, cryptocurrency, Bitcoin
C1, C4, G1
Ait-Sahalia, Y. (1996). Testing Continuous-Time Models of the Spot Interest Rate. The Review of Financial Studies, 9(2), 385–426. https://doi.org/10.1093/rfs/9.2.385.
Angerer, M., Gramlich, M., & Hanke, M. (2025). Order Book Liquidity on Crypto Exchanges. Journal of Risk and Financial Management, 18(3), 1–29. https://doi.org/10.3390/jrfm18030124.
Benson, K., Faff, R., & Smith, T. (2015). Injecting liquidity into liquidity research. Pacific-Basin Finance Journal, 35B, 533–540. https://doi.org/10.1016/j.pacfin.2015.10.001.
Będowska-Sójka, B. (2018). The coherence of liquidity measures. The evidence from the emerging market. Finance Research Letters, 27, 118–123. https://doi.org/10.1016/j.frl.2018.02.014.
Biais, B., Foucault, T., & Hillion, P. (1997) Microstructure des marchés financiers. Institutions, modeles et tests empiriques. PUF Finance.
Black, F. (1971). Toward a Fully Automated Stock Exchange, Part I. Financial Analysts Journal, 27(4), 28–35. https://doi.org/10.2469/faj.v27.n4.28.
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327. https://doi.org/10.1016/0304-4076(86)90063-1.
Brauneis, A., Mestel, R., Riordan, R., & Theissen, E. (2021). How to measure the liquidity of cryptocurrency markets?. Journal of Banking and Finance, 124, 1–26. https://doi.org/10.1016 /j.jbankfin.2020.106041 .
Brenner, R. J., Harjes, R. H., & Kroner, K. F. (1996). Another Look at Models of the Short-Term Interest Rate. The Journal of Financial and Quantitative Analysis, 31(1), 85–107. https://doi.org/10.2307/2331388.
Chan, K. C., Karolyi, G. A., Longstaff, F. A., & Sanders, A. B. (1992). An Empirical Comparison of Alternative Models of the Short-Term Interest Rate. The Journal of Finance, 47(3), 1209–1227. https://doi.org/10.1111/j.1540-6261.1992.tb04011.x.
Chordia, T., Roll, R., & Subrahmanyam, A. (2002). Order imbalance, liquidity, and market returns. Journal of Financial Economics, 65(1), 111–130. https://doi.org/10.1016/S0304-405X(02)00136-8.
Cong, L. W., Li, X., Tang, K., & Yang, Y. (2023). Crypto Wash Trading. Management Science, 69(11), 6427–6454. https://doi.org/10.1287/mnsc.2021.02709.
Cont, R., Kukanov, A., & Stoikov, S. (2014). The Price Impact of Order Book Events. Journal of Financial Econometrics, 12(1), 47–88. https://dx.doi.org/10.2139/ssrn.1712822.
Díaz, A., & Escribano, A. (2020). Measuring the multi-faceted dimension of liquidity in financial markets: A literature review. Research in International Business and Finance, 51, 1–16. https://doi.org/10.1016/j.ribaf.2019.101079.
Doman, M. (2011). Mikrostruktura giełd papierów wartościowych. Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu.
Dong, J., Kempf, A., & Yadav, P. K. (2007). Resiliency, the Neglected Dimension of Market Liquidity: Empirical Evidence from the New York Stock Exchange. http://dx.doi.org/10.2139/ssrn.967262.
Engle, R. F., & Lange, J. (1998). Measuring, Forecasting and Explaining Time Varying Liquidity in the Stock Market (UCSD Economics Discussion Paper 97-12). https://dx.doi.org/10.2139 /ssrn.58278 .
Fleming, M. J. (2003). Measuring Treasury Market Liquidity. FRBNY Economic Policy Review, 9(3), 83–108. https://www.newyorkfed.org/research/epr/03v09n3/0309flem.html.
Fong, K. Y. L., Holden, C. W., & Trzcinka, C. A. (2017). What Are the Best Liquidity Proxies for Global Research?. Review of Finance, 21(4), 1355–1401. https://doi.org/10.1093/rof/rfx003.
Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks. The Journal of Finance, 48(5), 1779–1801. https://doi.org/10.1111/j.1540-6261.1993.tb05128.x.
Goyenko, R. Y., Holden, C. W., & Trzcinka, C. A. (2009). Do liquidity measures measure liquidity?. Journal of Financial Economics, 92(2), 153–181. https://doi.org/10.1016/j.jfineco.2008.06.002.
Hasan, M., Naeem, M. A., Arif, M., Shahzad, S. J. H., & Vo, X. V. (2022). Liquidity connectedness in cryptocurrency market. Financial Innovation, 8(3), 1–25. https://doi.org/10.1186/s40854-021 -00308-3 .
Higgins, M. L., & Bera, A. K. (1992). A Class of Nonlinear Arch Models. International Economic Review, 33(1), 137–158. https://doi.org/10.2307/2526988.
Imisiker, S., & Tas, B. K. O. (2018). Wash trades as a stock market manipulation tool. Journal of Behavioral and Experimental Finance, 20, 92–98. https://doi.org/10.1016/j.jbef.2018.08.004.
Jankowski, R., & Olbryś, J. (2015). Wymiary płynności rynku papierów wartościowych. Zeszyty Naukowe Uniwersytetu Szczecińskiego. Finanse, Rynki Finansowe, Ubezpieczenia, (73), 645–658. http://wneiz.pl/frfu/numery/rok2015/frfu-nr-73-2015/5869-wymiary-plynnosci-rynku-papierow-wartosciowych.
Koedijk, K. G., Nissen, F. G. J. A., Schotman, P. C., & Wolff, C. C. P. (1997). The Dynamics of Short-Term Interest Rate Volatility Reconsidered. Review of Finance, 1(1), 105–130. https://doi.org/10.1023/A:1009714314989.
Olbryś, J., & Mursztyn, M. (2017a). Dimensions of Market Liquidity: The Case of the Polish Stock Market. In N. Tsounis & A. Vlachvei (Eds.), Advances in Applied Economic Research (pp. 151–166). Springer. https://doi.org/10.1007/978-3-319-48454-9_12.
Olbryś, J., & Mursztyn, M. (2017b). Pomiar naprężenia rynku na Giełdzie Papierów Wartościowych w Warszawie SA. Finanse, Rynki Finansowe, Ubezpieczenia, (1), 389–398. https://doi.org/10.18276/frfu.2017.1.85-31.
Piontek, K. (2004). Modelowanie zmienności stóp procentowych na przykładzie stopy WIBOR. Prace Naukowe Akademii Ekonomicznej we Wrocławiu, 1037(2), 129–139.
Silantyev, E. (2019). Order flow analysis of cryptocurrency markets. Digital Finance, 1, 191–218. https://doi.org/10.1007/s42521-019-00007-w.
Victor, F., & Weintraud, A. M. (2021). Detecting and Quantifying Wash Trading on Decentralized Cryptocurrency Exchanges. In J. Lesovec, M. Grobelnik, M. Najork, J. Tang & L. Zia (Eds.), WWW’21: The Web Conference 2021 (pp. 23–32). Association for Computing Machinery. https://doi.org/10.1145/3442381.3449824.
von Wyss, R. (2003). Measuring and predicting liquidity in the stock market [doctoral dissertation, Universität St. Gallen]. https://www.alexandria.unisg.ch/entities/publication/04637963-18e6 -400b-bf5d-76597d3b7d21 .
Wei, W. C. (2018). Liquidity and market efficiency in cryptocurrencies. Economics Letters, 168, 21–24. https://doi.org/10.1016/j.econlet.2018.04.003.
Wong, J., & Fung, L. (2005). Liquidity of the Hong Kong Stock Market since the Asian Financial Crisis. https://www.bis.org/cgfs/wong-fung.pdf.